【个人简介】
赵昕悦,女,1990年4月出生,中共党员,教授,博士生导师,应用生物科学系教师党支部书记,荷兰代尔夫特理工大学访问学者,校引进人才,“东农学术英才”高层次人才基金获得者,《Separations》、《WEC&N》客座编辑,《iMata》、《Eco-Environment & Health》、《Carbon Research》、《CCL》、《中国给水排水》、《湿地科学与管理》、《水生态学杂志》等期刊青年编委,深圳市标准技术研究院农业专家,国家自然科学基金函评专家,并担任多个国内外知名学术期刊审稿人。主要从事人工湿地环境微生物生态修复、污水生物强化处理、环境可持续性评估研究。近5年主持国家自然科学基金(面上项目)、国家自然科学基金(青年项目)、中国博士后科学基金(特别资助)等国家及省部级科研项目10余项。以第一作者/通讯作者在Water Research等环境领域顶级期刊发表论文60余篇(包括中科院一区SCI论文50余篇、ESI高被引论文8篇,篇均影响因子>10)、EI收录论文4篇,单篇最高被引100余次。基于已有研究成果获得授权专利15项,并与企业合作转化。深耕教学一线,获第七届黑龙江省高校青年教师教学竞赛一等奖等10余项省级、校级教学奖项,主编出版教材1部,出版专著(独著)1部。指导学生参加全国、全省大学生技能大赛,获国家级奖项8项。
【学习经历】:
2008.09-2012.07,东北农业大学,生命科学学院,学士;
2012.09-2014.07,哈尔滨工业大学,环境学院,硕士;
2014.09-2018.06,哈尔滨工业大学,环境学院,博士;
2016.09-2018.04,代尔夫特理工大学(Delft University of Technology),土木与地球科学学院,联合培养博士
【工作经历】:
2018.09-2020.01,东北农业大学,资源与环境学院,讲师;
2020.01-2022.12,东北农业大学,资源与环境学院,副教授/硕士生导师;
2023.01-2024.08,东北农业大学,资源与环境学院,副教授/博士生导师;
2024.09-今,东北农业大学,资源与环境学院,教授/博士生导师
【主讲课程】:
本科生课程:《水污染控制工程》、《蛋白质与酶工程》
硕士生课程:《土壤微生物分子生态学》、《现代酶工程修复与环境技术》
博士生课程:《论文写作与学术规范》
【教学成果及获奖】:
[1] 第七届黑龙江省高校青年教师教学竞赛 工科组一等奖
[2] 第十一届黑龙江省高校青年教师多媒体课件制作大赛 二等奖
[3] 主持黑龙江省高等教育教学改革研究项目1项,主持黑龙江省课程思政建设项目1项,主持东北农业大学研究生全英文课程建设项目(重点项目)1项;主持校级课程思政项目1项;主持校级研究生精品课程1项
[4] 东北农业大学 2025年教学质量奖 二等奖
[5] 东北农业大学2024年教学成果奖 二等奖
[6] 第十三届东北农业大学青年教师教学竞赛 工科组一等奖
[7] 第十二届东北农业大学青年教师教学竞赛 工科组二等奖
[8] 第二届东北农业大学教学创新大赛 副高组二等奖
[9] “水污染控制工程”课程荣获2022年东北农业大学教案设计大赛 二等奖
[10] “水污染控制工程”课程荣获2023年东北农业大学课程思政优秀案例奖
[11] 2023年资源与环境学院青年教师教学技能大赛 第一名
[12] 2020年资源与环境学院青年教师教学技能大赛 第一名
[13] 发表教改论文3篇 第一作者
[14] 指导学生获“第七届全国大学生国土空间规划技能大赛 一等奖”、“第十八届全国大学生节能减排社会实践与科技竞赛 一等奖”、“第十届全国大学生生命科学竞赛(创新创业类) 二等奖”、 “第四届零碳未来创新大赛 二等奖”、“2025年黑龙江大学生节能减排社会实践与科技竞赛 一等奖”等
[15] 东北农业大学首届党支部书记素质能力大赛 二等奖;所在党支部荣获2025年先进基层党组织
【研究方向】:
本人研究方向主要围绕环境微生物修复及环境可持续性分析开展。
具体科研工作一:开发微生物复合菌剂,突破低温环境下系统生物脱氮的局限性;构建低温高效的微生物复合菌剂,用以改善人工湿地系统中功能微生物代谢活性,从而提高污水的处理效率,使出水水质达到相应的国家标准。
具体科研工作二:延伸与拓展基于“生物强化”的污水处理技术,揭示微生物学污水净化机制,并实现系统可持续性应用。重点关注微生物群落动态演替,反应器的运行调控,数学模型的建立及过程优化。此外,采用生态设计理念构建决策系统,旨在为污水生物处理技术的可持续性发展提供关键设计参数和工况参考。
【学术兼职】:
[1]《Separations》客座编辑
[2]《WEC&N》客座编辑
[3]《iMata》青年编委
[4]《Carbon Research》青年编委
[5]《Eco-Environment & Health》青年编委
[6]《CCL》青年编委
[7]《Engineering》青年编委
[8]《中国给水排水》青年编委
[9]《湿地科学与管理》青年编委
[10]《水生态环境杂志》青年编委
[11]《市政技术》青年编委
[12]《微生物学通报》青年编委
[13]《当代化工研究》编委
[14] 农业农村部生猪养殖设施工程重点实验室成员
[15] 住房建设部智慧海绵城市重点实验室成员
[16] 深圳市标准技术研究院农业专家库成员
[17] 国家科技部专家库成员
[18] 国家自然科学基金函评专家
[19] Water Research、Chemical Engineering Journal、Journal of hazardous materials、Bioresource Technology等环境领域高水平SCI Top 期刊审稿人
【科研课题】:
[1] 国家自然科学基金(面上项目)“纳米塑料暴露下人工湿地生物脱氮抑制机制及PQD-CDs驱动的铁氮循环修复研究”,2026.01-2029.12,49万元,主持
[2] 国家自然科学基金(青年基金)“昼夜交替下人工湿地根际微生物响应机制研究:以生活污水脱氮为例”,2023.01-2025.12,30万元,主持
[3] 中国博士后科学基金(特别资助)“基于人工湿地处理农村畜禽养殖废水脱氮的根际微生物响应机制研究”,2023.07-2026.06,18万元,主持
[4] 黑龙江省自然科学基金(优青项目)“铁-氮循环角度下纳米塑料暴露对人工湿地污水脱氮影响机制研究”,2024.12-2027.12,10万元,主持
[5] 国智水科(苏州)数字科技有限公司 “面向水体生态修复的类脑湿地传感-识别-调控一体化系统原型开发”,2025.6-2028.12,100万元,主持
[6] 黑龙江清昱森智慧环境科技有限公司 “面向农业湿地生态修复场景的多源数据融合与智能预警-评估-决策支持系统开发”,2025.12-2028.12,10万元,主持
[7] 中国水产科学研究院黑龙江水产研究所 “水生渔业生态浮游动植物及水体水质检测横向课题”,2023.11-2026.12,9万元,主持
[8] 中国博士后科学基金(面上项目)“基于LCA生态设计的技术参数与多维目标的互作机制研究:以生物强化人工湿地为例”,2020.11-2023.10,8万元,主持
[9] 黑龙江省自然科学基金(联合引导项目)“基于LCA的多元方法耦合联动生态设计体系搭建及其在低温生物炭基人工湿地生物强化中的应用”,2020.07-2023.12,10万元,主持
[10] 黑龙江省博士后科学基金(面上项目)“基于生命周期评价的污水处理生态设计机制及其案例研究”,2020.11-2023.10,7万元,主持
[11] 东农学者计划“学术骨干”项目 “低温人工湿地系统生物强化脱氮及生态设计研究”,2018.12-2023.11,20万元,主持
[12] 2022年东北农业大学“课程思政”试点课程 “水污染控制工程”,2022.04-2024.03,0.5万元,主持
[13] 2025年东北农业大学全英文课程建设项目,“论文写作与学术规范”,2025.09-2027.08,5万元,主持
【学术论文】:
以第一作者/通讯作者在Water Research、Chemical Engineering Journal等环境领域顶级期刊发表论文60余篇(包括中科院一区SCI论文50余篇、ESI高被引论文8篇,篇均影响因子>10)、EI收录论文4篇,单篇最高被引100余次。代表性论文:
[1] From mechanism to design: thermodynamic–metabolic coupling and data-driven optimization of Fe–S substrates in constructed wetlands. Chemical Engineering Journal, 2026, 528, 172384 (第一作者,SCI, IF=15.1, 中科院一区)
[2] Chronic C-S-Fe defense dominance over nutrient removal in nanoplastics-exposed constructed wetlands: persistent feoA as the core biomarker. Journal of Cleaner Production, 2026, 538, 147375 (通讯作者,SCI, IF=9.7, 中科院一区)
[3] Carbon quantum dots as charge bridges: Photogenerated electrons flow alter microbial interactions and electron transfer networks in constructed wetlands. Bioresource Technology, 2026, 444,133933 (通讯作者,SCI, IF=9.5, 中科院一区)
[4] Acceleration of the Fe-S-N cycle associated with electron transfer through cable bacteria in constructed wetlands. Journal of Cleaner Production, 2025, Accepted (第一作者,SCI, IF=9.7, 中科院一区)
[5] Redox fluctuations and iron enrichment orchestrate a time-coordinated Fe–N metabolism in constructed wetlands. Journal of Cleaner Production, 2025, 535, 147152 (通讯作者,SCI, IF=9.7, 中科院一区)
[6] Driving synergistic Fe-N-Plastic co-metabolism and functional microbial symbiosis via nZVI@RA for enhanced decontamination in constructed wetlands. Journal of Hazardous Materials, 2025, 500, 140342 (通讯作者,SCI, IF=11,3, 中科院一区)
[7] From oxidative stress to metabolic revival: Pyrite-based constructed wetlands harness S-Fe-N synergy to combat nanoplastics toxicity. Chemical Engineering Journal, 2025, 519, 165606 (通讯作者,SCI, IF=15.1, 中科院一区)
[8] Functionalized FeS2@CQDs as dual-role agents: Enhancing electron availability and transport for improved nitrogen removal in constructed wetlands. Journal of Cleaner Production, 2025, 520, 146186 (通讯作者,SCI, IF=9.7, 中科院一区)
[9] Exploring the role of cytochrome bc1 complexes in alleviating the inhibition of microbial nitrogen metabolism by nanoplastics: Insights into the use of recycled aggregates from constructed wetlands. Journal of Cleaner Production, 2025, 516, 145837 (通讯作者,SCI, IF=9.7, 中科院一区)
[10] Application and evaluation of biochar/attapulgite composites for controlling nitrogen pollution and ecological response in a small lentic system: Implications water/sediment quality management in standing water bodies. Journal of Environmental Chemical Engineering, 2025, 13, 116924 (通讯作者,SCI, IF=7.2, 中科院二区)
[11] Photoperiod-Driven Optimization of Microbial Iron−Nitrogen Cycle for Improved Nitrogen Removal Efficiency in Constructed Wetlands. ACS ES&T Water, 2025, 5, 1853−1861 (通讯作者,SCI, IF=4.3, 中科院三区)
[12] Enhancing microplastic removal and nitrogen mitigation in constructed wetlands: An earthworm-centric perspective. Journal of Hazardous Materials, 2025, 500, 140342 (通讯作者,SCI, IF=11,3, 中科院一区)
[13] Microbial Iron Utilization Pathways in Constructed Wetlands: Analysis of Substrates Affecting Iron Transformation, Absorption, and Utilization. ACS ES&T Engineering, 2025, 5, 366−376 (第一作者,SCI, IF=6.7, 中科院三区)
[14] Nitrogen metabolic responses of non-rhizosphere and rhizosphere microbial communities in constructed wetlands under nanoplastics disturbance. Journal of Hazardous Materials, 2025, 484, 136777 (第一作者,SCI, IF=11,3, 中科院一区)
[15] Removal of lead ions (Pb2+) from water withlignite-activated carbon modified by water vapor and Aluminum chlorohydrate. International Journal of Coal Preparation and Utilization, 2025, 1–18. (通讯作者,SCI, IF=2.1, 中科院四区)
[16] Adsorption of Orange G on Activated Porous Carbon Derived from Coal Tar Pitch: Experimental and DFT Study. Langmuir, 2024, 40, 25471−25482 (通讯作者,SCI, IF=3.9, 中科院二区)
[17] Adaptive shifts in constructed wetland microbial communities and GHG emissions under different NPs concentrations disturbances. Chemical Engineering Journal, 2024, 497, 154616 (第一作者,SCI, IF=13.2, 中科院一区)
[18] Novel strategies for enhancing energy metabolism and wastewater treatment in algae-bacteria symbiotic system through carbon dots-induced photogenerated electrons: The definitive role of accelerated electron transport. Chemical Engineering Journal, 2024, 500, 157016 (通讯作者,SCI, IF=13.2, 中科院一区)
[19] Synergistic mechanisms of denitrification in FeS2-based constructed wetlands: Effects of organic carbon availability under day-night alterations. Bioresource Technology, 2024, 406, 131066 (通讯作者,SCI, IF=9.5, 中科院一区)
[20] Enhancing environmental and economic benefits of constructed wetlands through plant recovery: A life cycle perspective. Science of the Total Environment, 2024, 951, 175784 (通讯作者,SCI, IF=8, 中科院二区)
[21] Recovery capacity of constructed wetlands in response to multiple disturbances: Microbial interaction perspective. Bioresource Technology, 2024, 408, 131155 (第一作者,SCI, IF=9.5, 中科院一区)
[22] Toxic effects of Nanoplastics on biological nitrogen removal in constructed wetlands: evidence from Iron utilization and metabolism. Water Research,2024,256,121577 (第一作者,SCI, IF=12.800,中科院一区)
[23] Response mechanism of microalgae-based constructed wetland to day-night alternations. Chemical Engineering Journal. 2024, 487, 150544. (通讯作者,SCI, IF=15.100,中科院一区)
[24] A study on microbial mechanism in response to different nano-plastics concentrations in constructed wetland and its carbon footprints analysis. Chemical Engineering Journal. 2024, 480:148023. (通讯作者,SCI, IF=15.100, 中科院一区)
[25] Spatiotemporal dynamics of root exudates drive microbial adaptation mechanisms under day-night alterations in constructed wetlands. Chemical Engineering Journal. 2023, 477:147311. (第一作者,SCI, IF=16.744,中科院一区)
[26] Resource and energy utilization of swine wastewater treatment: recent progress and future directions. Separations. 2023, 10:591. (通讯作者,SCI, IF=2.6)
[27] Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? Environment International. 2023,179:108144. (通讯作者,SCI, IF=11.800,中科院一区)
[28] Rhizosphere microbial dynamics in response to Desmondesmus sp. ZM-3 and carbon footprint analysis in constructed wetland. Journal of Cleaner Production. 2023, 408: 137128. (第一作者,SCI, IF=11.100,中科院一区)
[29] Exploring the resilience of constructed wetlands to harmful algal blooms disturbances: A study on microbial response mechanisms. Bioresource Technology. 2023, 383: 129251. (第一作者,SCI, IF=11.400,中科院一区)
[30] Microalgae-based constructed wetland system enhances nitrogen removal and reduce carbon emissions: Performance and mechanisms. Science of the Total Environment. 2023, 877: 162883. (第一作者,SCI, IF=9.800,中科院一区)
[31] Succession dynamics of microbial communities responding to the exogenous microalgae ZM-5 and analysis of the environmental sustainability of a constructed wetland system. Bioresource Technology. 2023, 371: 128642. (第一作者,SCI, IF=11.889,中科院一区)
[32] Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. Environment International. 2023, 171: 107690. (通讯作者,SCI, IF=13.352,中科院一区)
[33] Successional dynamics of microbial communities in response to concentration perturbation in constructed wetland system. Bioresource Technology. 2022, 361: 127733. (第一作者,SCI, IF=11.889,中科院一区)
[34] Constructed wetlands treating synthetic wastewater in response to day-night alterations: Performance and mechanisms. Chemical Engineering Journal. 2022, 446:137460. (第一作者,SCI, IF=16.744,中科院一区)
[35] Efficient vanillin biosynthesis by recombinant lignin-degrading bacterium Arthrobacter sp. C2 and its environmental profile via life cycle assessment. Bioresource Technology. 2022, 347: 126434. (第一作者,SCI, IF=11.889,中科院一区)
[36] Single-cell sorting of microalgae and identification of optimal conditions by using response surface methodology coupled with life-cycle approaches. Science of the Total Environment. 2022, 832:155061. (第一作者,SCI, IF=10.753,中科院一区)
[37] Biochar and Hydrochar from Agricultural Residues for Soil Conditioning: Life Cycle Assessment and Microbially Mediated C and N Cycles. ACS Sustainable Chemistry & Engineering. 2022, 10, 3574-3583. (通讯作者,SCI, IF=9.224,中科院一区)
[38] Environmental profile of natural biological vanillin production via life cycle assessment. Journal of Cleaner Production. 2021, 308: 127399. (第一作者,SCI, IF=11.072,中科院一区)
[39] Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment. Science of the Total Environment. 2021, 769:144771. (第一作者,SCI, IF=10.753,中科院一区)
[40] Parameter optimization of environmental technologies using a LCA-based analysis scheme: a bioaugmentation case study. Science of the Total Environment. 2020, 737:140284. (第一作者,SCI, IF=10.753,中科院一区)
[41] Eco-Efficiency of end-of-pie systems: An extended environmental cost efficiency framework for wastewater treatment. Water, 2020, 12(2): 454. (第一作者,SCI, IF=3.530)
[42] Bioaugmentation of atrazine removal in constructed wetland: performance, microbial dynamics, and environmental impacts. Bioresource Technology. 2019, 289: 121618. (第一作者,SCI, IF=11.889,中科院一区)
[43] Establishing a decision-support system for eco-design of biological wastewater treatment: a case study of bioaugmented constructed wetland. Bioresource Technology. 2019, 274: 425-429.( 第一作者,SCI, IF=11.889,中科院一区)
【授权专利】:
[1] 一种人工湿地填料及制备方法和应用(ZL202411582752.3)
[2] 一株产油小球藻ZM-5及其应用(ZL202111021380.3)
[3] 一株乌拉尔菌HC6及其低温生产2,3-丁二醇的应用(ZL202310526702.2)
[4] 一种节杆菌C2及其重组节杆菌在降解木质素中的应用(ZL202310527459.6)
[5] 一种低温堆肥微生物复合菌剂及其制备方法和应用(ZL202011091765.2)
[6] 一株高效阿特拉津降解菌及其应用以及筛选方法(ZL201610026144.3)
[7] 阿特拉津降解菌ZXY-2的培养基(ZL201610338985.8)
[8] 一种菌根强化水生美人蕉降解水中污染物的方法(ZL201610179628.1)
[9] 一株高效阿特拉津降解菌及其筛选方法以及在农田废水中阿特拉津的生物降解的应用(ZL201510335229.5)
[10] 一种布水均匀的人工湿地装置(ZL201520332923.7)
[11] 一种人工湿地模拟系统出水调节装置(ZL201520090938.7)
[12] 一种内置多电极体系的导流板式微生物电解池及其使用方法(ZL201410001377.9)
[13] 一种降解生活污水复合菌剂的制备方法(CN103540549A)
[14] 生物炭耦合协同降解TCC微生物菌剂及其制备方法(CN115537366A)
[15] 基于人工湿地智能驱动的湿地系统塑料污染智能降解系统(ZL202510604541.3)
[16] 基于吉布斯自由能调控与机器学习预测的以铁硫为基质人工湿地脱氮系统构建方法(ZL202511378471.0)
【学术专著】:
[1] 国家级教材《环境生物学》,副主编,ISBN 978-7-03-064028-4
[2] 专著《水污染与水环境治理》,独著,ISBN 979-8-88882-411-5
[3] 软著《农业湿地污染风险评估系统》,登记号:2025SR2356778
【联系方式】:
1. 通信地址:黑龙江省哈尔滨市香坊区长江路600号东北农业大学资源与环境学院707,150030
2. 电子邮箱:zhaoxy@neau.edu.c